#### Appendix 11

#### **Bible Spring 2022 Population Modeling**

To complete the population modeling for the Blawn Wash HMA and Bible Complex combined, version 1.40 of the WinEquus program, created April 2, 2002, was utilized.

#### **Objectives of Population Modeling**

Review of the data output for each of the simulations provided may use full comparisons of the possible outcomes for each alternative. Some of the questions that need to be answered through the modeling include:

- Do any of the Alternatives "crash" the population?
- What effect does population growth suppression have on population growth rate?
- What effects do the different alternatives have on the average population size?
- What effects do the different alternatives have on the genetic health of the herd?

Population Data, Criteria, and Parameters utilized for Population Modeling All simulations used the survival probabilities, foaling rates, and sex ratio at birth that was supplied with the Winn Equus population for the Garfield HMA.

Sex ratio at Birth: 42% Females; 58% Males

The following percent effectiveness of population growth suppression was utilized in the population modeling for Alternative I: Year 1: 94%

The following table displays the contraception parameters utilized in the population model for Proposed Alternative:

#### Contraception Criteria

| Age | Percentages for Fertility Treatment |
|-----|-------------------------------------|
| 1   | 100%                                |
| 2   | 100%                                |
| 3   | 100%                                |
| 4   | 100%                                |
| 5   | 100%                                |
| 6   | 100%                                |
| 7   | 100%                                |

| Age   | Percentages for Fertility Treatment |
|-------|-------------------------------------|
| 8     | 100%                                |
| 9     | 100%                                |
| 10-14 | 100%                                |
| 15-19 | 100%                                |
| 20+   | 100%                                |

#### Population Modeling Criteria

The following summarizes the population modeling criteria that are common to the Proposed Action and all alternatives:

• Starting year: 2022

• Initial Gather Year: 2022

• Gather interval: regular interval of three years

• Gather for fertility treatment regardless of population size: Yes

• Continue to gather after reduction to treat females: Yes

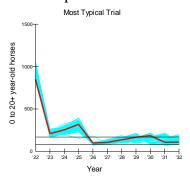
• Sex ratio at birth: 58% males

• Percent of the population that can be gathered: 80%

• Minimum age for long-term holding facility horses: Not Applicable (Gate Cut)

• Foals are included in the AML

• Simulations were run for 10 years with 100 trials each.

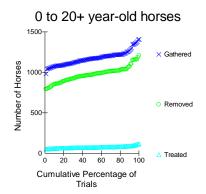

The following table displays the population modeling parameters utilized in the model:

| Population Modeling Parameters Modeling Parameter                      | Alternatives 1: Proposed Action- Gather and Removal of Excess Wild Horses and Application of Population Growth Suppression | Alternative 2:<br>Gather and Removal<br>of Excess Wild<br>Horses without<br>Population Growth<br>Suppression. | Alternative 3: No Action – Continue Existing Management. No Gather and Removal |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Management by removal only                                             | No                                                                                                                         | Yes                                                                                                           | No                                                                             |
| Threshold Population Size Following<br>Gathers                         | 80                                                                                                                         | 80                                                                                                            | N/A                                                                            |
| Target Population Size Following Gathers                               | 80                                                                                                                         | 80                                                                                                            | N/A                                                                            |
| Gather for Population Growth Suppression regardless of population size | Yes                                                                                                                        | No                                                                                                            | N/A                                                                            |

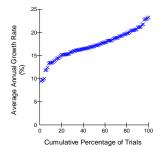
| Population Modeling Parameters Modeling Parameter          | Alternatives 1: Proposed Action- Gather and Removal of Excess Wild Horses and Application of Population Growth Suppression | Alternative 2:<br>Gather and Removal<br>of Excess Wild<br>Horses without<br>Population Growth<br>Suppression. | Alternative 3: No Action – Continue Existing Management. No Gather and Removal |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Gather continue after removals to treat additional females | Yes                                                                                                                        | Yes                                                                                                           | N/A                                                                            |
| Effectiveness of Population Growth<br>Suppression: Year 1  | 94%                                                                                                                        | N/A                                                                                                           | N/A                                                                            |

## Results Alternative 1: Proposed Action –Gather and Removal of Excess Wild Horses and Application of Population Growth Suppression.

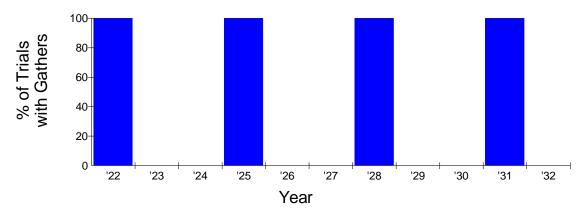
#### Population Size

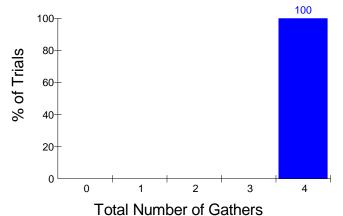



#### **Population Sizes in 11 Years\***



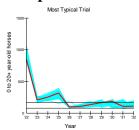

| _                      | Minimum | Average | Maximum |
|------------------------|---------|---------|---------|
| Lowest Trial           | 59      | 192     | 804     |
| 10th Percentile        | 82      | 217     | 824     |
| 25th Percentile        | 86      | 223     | 840     |
| Median Trial           | 92      | 236     | 875     |
| 75th Percentile        | 96      | 245     | 914     |
| 90th Percentile        | 100     | 257     | 971     |
| Highest Trial          | 109     | 281     | 1171    |
| * 0 to 20+ year-old ho | orses   |         |         |


In 11 years and 100 trials, the lowest number 0 to 20+ year-old horses ever obtained was 59 and the highest was 1171. In half the trials, the minimum population size in 11 years was less than 92 and the maximum was less than 875. The average population size across 11 years ranged from 192 to 281.




|                   | Totals in 11 Years* |         |         |  |
|-------------------|---------------------|---------|---------|--|
|                   | Gathered            | Removed | Treated |  |
| Lowest Trial      | 983                 | 793     | 53      |  |
| 10th Percentile   | 1079                | 856     | 62      |  |
| 25th Percentile   | 1108                | 910     | 68      |  |
| Median Trial      | 1174                | 972     | 74      |  |
| 75th Percentile   | 1221                | 1020    | 82      |  |
| 90th Percentile   | 1281                | 1087    | 92      |  |
| Highest Trial     | 1410                | 1210    | 117     |  |
| * 0 to 20+ year-o | old horses          |         |         |  |




# Average Growth Rate in 10 Years Lowest Trial 9.5 10th Percentile 13.5 25th Percentile 15.4 Median Trial 17.2 75th Percentile 19.4 90th Percentile 21.1 Highest Trial 23.3





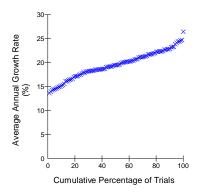
### Results Alternative 2: Gather and Removal of Excess Wild Horses without Population Growth Suppression





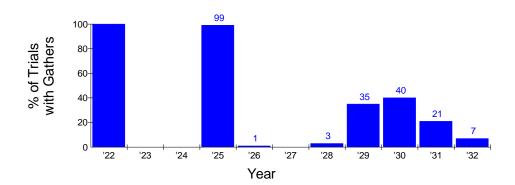
# O to 20+ year-old horses \*\*Maximum\*\* \*\*Average\*\* \*\*Output\*\* \*\*Output\*\* \*\*Cumulative Percentage of Trials\*\*

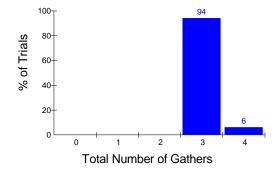
#### **Population Sizes in 11 Years\***


|                            | Minimum | Average | Maximum |
|----------------------------|---------|---------|---------|
| Lowest Trial               | 70      | 207     | 811     |
| 10th Percentile            | 83      | 218     | 820     |
| 25th Percentile            | 88      | 223     | 841     |
| Median Trial               | 93      | 231     | 864     |
| 75th Percentile            | 96      | 240     | 908     |
| 90th Percentile            | 100     | 250     | 976     |
| Highest Trial              | 106     | 257     | 1055    |
| * 0 to 20+ year-old horses |         |         |         |

In 11 years and 100 trials, the lowest number 0 to 20+ year-old horses ever obtained was 70 and the highest was 1055. In half the trials, the minimum population size in 11 years was less than 93 and the maximum was less than 864. The average population size across 11 years ranged from 207 to 257.

**Totals in 11 Years\*** 

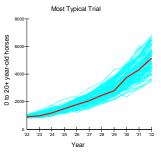

|                  | 0 to  | 20                       | )+ y                 | /ea | r-ol       | d ho      | orses      |
|------------------|-------|--------------------------|----------------------|-----|------------|-----------|------------|
|                  | 1500  |                          |                      |     |            |           |            |
| of Horses        | 1000- |                          |                      |     |            |           | × Gathered |
| Number of Horses | 500-  |                          |                      |     |            | _         | Removed    |
|                  | 0     | <sup>20</sup><br>Iulativ | 40<br>re Pe<br>Trial |     | 80<br>tage | 100<br>of |            |


|                   | Gai        | thered Removed |
|-------------------|------------|----------------|
| Lowest Trial      | 863        | 833            |
| 10th Percentile   | 918        | 882            |
| 25th Percentile   | 954        | 922            |
| Median Trial      | 1001       | 970            |
| 75th Percentile   | 1044       | 1006           |
| 90th Percentile   | 1136       | 1090           |
| Highest Trial     | 1240       | 1201           |
| * 0 to 20+ year-o | old horses |                |



#### **Average Growth Rate in 10 Years**

| Lowest Trial    | 13.7 |
|-----------------|------|
| 10th Percentile | 15.3 |
| 25th Percentile | 17.8 |
| Median Trial    | 19.5 |
| 75th Percentile | 21.8 |
| 90th Percentile | 23.1 |
| Highest Trial   | 26.5 |
|                 |      |



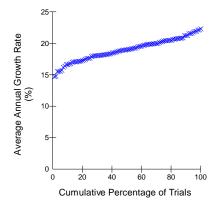



# Results Alternative 3: No Action – No Gather, Removal or use of Population Growth Suppression

#### **Results - No Action**



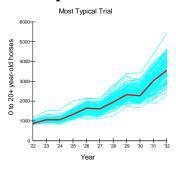



#### **Population Sizes in 11 Years\***

| 0 to             | 20+ yea       | r-old h | orses                     |
|------------------|---------------|---------|---------------------------|
| 70008            |               |         |                           |
|                  |               |         | × Maximum                 |
| 7000 August 2000 |               |         | <ul><li>Average</li></ul> |
| ₹ 2000           |               |         |                           |
|                  |               |         |                           |
| 0 :              | 20 40 60      | 80 100  | △ Minimum                 |
| Cumu             | lative Percen | tage of |                           |

| •                   | Minimum  | Average | Maximum |
|---------------------|----------|---------|---------|
| Lowest Trial        | 806      | 1837    | 3483    |
| 10th Percentile     | 830      | 2112    | 4115    |
| 25th Percentile     | 850      | 2252    | 4572    |
| Median Trial        | 882      | 2467    | 5186    |
| 75th Percentile     | 928      | 2737    | 5704    |
| 90th Percentile     | 1005     | 2952    | 6444    |
| Highest Trial       | 1094     | 3228    | 6805    |
| * 0 to 20+ year-ole | d horses |         |         |

In 11 years and 100 trials, the lowest number 0 to 20+ year-old horses ever obtained was 806 and the highest was 6805. In half the trials, the minimum population size in 11 years was less than 882 and the maximum was less than 5186. The average population size across 11 years ranged from 1837 to 3228.


#### **Average Growth Rate in 10 Years**



| Lowest Trial              | 14.7 |  |  |  |
|---------------------------|------|--|--|--|
| 10th Percentile           | 16.7 |  |  |  |
| 25th Percentile           | 17.8 |  |  |  |
| Median Trial              | 19.0 |  |  |  |
| 75th Percentile           | 20.4 |  |  |  |
| 90th Percentile           | 21.3 |  |  |  |
| Highest Trial             | 22.3 |  |  |  |
| * 0 to 20+ year-old horse |      |  |  |  |

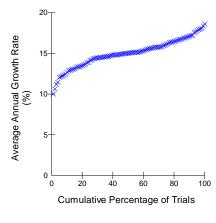
#### Alternative Considered but Not Analyzed: Population Growth Suppression Only.

#### **Population Size**



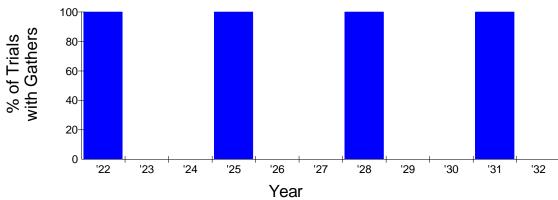
#### Population Sizes in 11 Years\*

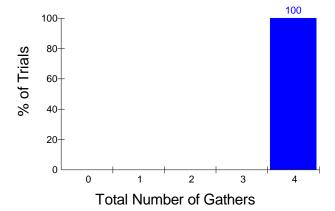
| 0 to 20+ year-old horses           |       |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |
|------------------------------------|-------|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|
|                                    | 6000T |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |
| m                                  | 5000  |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×              | × Maximum                   |
| Number of Horses                   | 4000- |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , and a second |                             |
| ar of F                            | 3000  |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o              | <ul> <li>Average</li> </ul> |
| nmpe                               | 2000  | andamin | atoniono | maaaa | A STATE OF THE STA |                | Avelage                     |
| z                                  | 1000  |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |
|                                    | 0     | 20      | 40       | 60    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100            | △ Minimum                   |
| Cumulative Percentage of<br>Trials |       |         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                             |


|                            | Minimum | Average | Maximum |  |  |
|----------------------------|---------|---------|---------|--|--|
| Lowest Trial               | 805     | 1424    | 2353    |  |  |
| 10th Percentile            | 822     | 1646    | 2885    |  |  |
| 25th Percentile            | 841     | 1744    | 3256    |  |  |
| Median Trial               | 869     | 1906    | 3596    |  |  |
| 75th Percentile            | 908     | 2079    | 4028    |  |  |
| 90th Percentile            | 984     | 2198    | 4413    |  |  |
| Highest Trial              | 1185    | 2722    | 5455    |  |  |
| * 0 to 20+ year-old horses |         |         |         |  |  |

In 11 years and 100 trials, the lowest number 0 to 20+ year-old horses ever obtained was 805 and the highest was 5455. In half the trials, the minimum population size in 11 years was less than 869 and the maximum was less than 3596. The average population size across 11 years ranged from 1424 to 2722.

#### **Totals in 11 Years\***


| 0 to              | o 20+         | - yea           | ır-ol | d ho      | orses      |
|-------------------|---------------|-----------------|-------|-----------|------------|
| 8000 <sub>T</sub> |               |                 |       | ×         |            |
| S 6000            |               |                 |       |           | × Gathered |
| Number of Horses  |               |                 |       | Δ<br>•••• | Removed    |
| 2000 0 G          |               |                 | 00    | 100       | △ Treated  |
| 0                 | 20 4          | 10 60           | 80    | 100       |            |
| Cum               | nulative<br>T | Percer<br>rials | itage | of        |            |


|                       | Gathered | Removed | Treated |
|-----------------------|----------|---------|---------|
| Lowest Trial          | 4107     | 0       | 1812    |
| 10th Percentile       | 4822     | 0       | 2128    |
| 25th Percentile       | 5102     | 0       | 2274    |
| Median Trial          | 5550     | 0       | 2422    |
| 75th Percentile       | 6042     | 0       | 2665    |
| 90th Percentile       | 6498     | 0       | 2849    |
| Highest Trial         | 7912     | 0       | 3489    |
| *0 to 20+ year-old he | orses    |         |         |



#### **Average Growth Rate in 10 Years**

| Lowest Trial    | 10.0 |
|-----------------|------|
| 10th Percentile | 12.8 |
| 25th Percentile | 14.2 |
| Median Trial    | 15.0 |
| 75th Percentile | 16.2 |
| 90th Percentile | 17.2 |
| Highest Trial   | 18.6 |
|                 |      |



